Fabrication Quality Analysis of a Fiber Optic Refractive Index Sensor Created by CO2 Laser Machining

in Sciences Citation Index(SCI), 科學引文索引資料庫(SCI)
標題Fabrication Quality Analysis of a Fiber Optic Refractive Index Sensor Created by CO2 Laser Machining
出版類型SCI(Sciences Citation Index)
AuthorsChien-Hsing Chen, 陳建興, Bo-Kuan Yeh 葉柏寬, Jaw-Luen Tang 湯兆崙, & Wei Te Wu(Benny) 吳瑋特
出版日期2013 / 3
其他編號NSC 101-2221-E-020-010-MY3

This study investigates the CO2 laser-stripped partial cladding of silica-based optic fibers with a core diameter of 400 μm, which enables them to sense the refractive index of the surrounding environment. However, inappropriate treatments during the machining process can generate a number of defects in the optic fiber sensors. Therefore, the quality of optic fiber sensors fabricated using CO2 laser machining must be analyzed. The results show that analysis of the fiber core size after machining can provide preliminary defect detection, and qualitative analysis of the optical transmission defects can be used to identify imperfections that are difficult to observe through size analysis. To more precisely and quantitatively detect fabrication defects, we included a tensile test and numerical aperture measurements in this study. After a series of quality inspections, we proposed improvements to the existing CO2 laser machining parameters, namely, a vertical scanning pathway, 4 W of power, and a feed rate of 9.45 cm/s. Using these improved parameters, we created optical fiber sensors with a core diameter of approximately 400 μm, no obvious optical transmission defects, a numerical aperture of 0.52 ± 0.019, a 0.886 Weibull modulus, and a 1.186 Weibull-shaped parameter. Finally, we used the optical fiber sensor fabricated using the improved parameters to measure the refractive indices of various solutions. The results show that a refractive-index resolution of 1.8 × 10?4 RIU (linear fitting R2 = 0.954) was achieved for sucrose solutions with refractive indices ranging between 1.333 and 1.383. We also adopted the particle plasmon resonance sensing scheme using the fabricated optical fibers. The results provided additional information, specifically, a superior sensor resolution of 5.73 × 10?5 RIU, and greater linearity at R2 = 0.999.

校址:912 屏東縣內埔鄉學府路1號 總機:886-8-7703202 傳真:886-8-7740165 系統開發統維護單位:國立屏東科技大學 電算中心 版權所有